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Deep Learning
• A brief introduction… assuming you are familiar with Neutral Networks 

• Disclaimer: I’m not a Deep Learning expert…  

• I’m borrowing slides from others (mostly from the Data Science @ LHC Workshop) 

• What is it? I guess technically, multi (many?) layer Neural Networks with large number of parameters. 

• Why now? Difficulty training such big networks in the past. 

• Solutions to difficulties in training (e.g. vanishing gradient problem)  

• Big Data provides the necessary large datasets for training  

• GPUs 

• Why is deep better than shallow? 

• Eliminate Feature Engineering 

• For shallow networks, most if your time spent on… developing algorithms that process raw data into the inputs to 
the NN. 

• Deep NNs can learn features from raw data. Save you time, and possibly the DNN learn features that are better 
than anything you could have come up with. 

• Unsupervised learning: DNNs classify events without being told what are the classes. The hope is that they could 
make sense of complicated data which we don’t understand.

http://indico.cern.ch/event/395374


Recent History
• Deep Learning feats that sparked broad interest: 

• 2012, Google 1B DNN learns to identify cats (and 20000 
other types of objects) (Wired Article, paper) 

• No features: trained with 200x200 pixel images from 
YouTube 

• Unsupervised: the pictures were unlabeled. 

• Google cluster 16000 cores ~ $1M. Redone with $20k 
system with GPUs.  

• 2013: Deep Mind builds AI that plays ATARI (Blogpost, 
Nature,YouTube)

http://www.wired.com/2014/12/deep-learning-renormalization/
http://static.googleusercontent.com/media/research.google.com/en/us/archive/unsupervised_icml2012.pdf
http://robohub.org/artificial-general-intelligence-that-plays-atari-video-games-how-did-deepmind-do-it/
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://www.youtube.com/watch?v=V1eYniJ0Rnk


P.Baldi 

Computer Vision - Image Classification

● Imagenet
● Over 1 million images, 1000 

classes, different sizes, avg 
482x415, color

● 16.42% Deep CNN dropout in 
2012

● 6.66% 22 layer CNN (GoogLeNet) 
in 2014

● 4.9%  (Google, Microsoft) super-
human performance in 2015

Sources: Krizhevsky et al ImageNet Classification with Deep Convolutional Neural Networks, Lee et al Deeply supervised nets 2014, 
Szegedy et al, Going Deeper with convolutions, ILSVRC2014, Sanchez & Perronnin CVPR 2011, http://www.clarifai.com/

Benenson, http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html



Examples

What are these numbers?

Image Models

Joint work with many colleagues at Google

Large Scale Deep Learning

Jeff Dean
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Large Scale Deep Learning

Jeff Dean



Functions Artificial Neural Nets 
Can Learn

Input Output

Pixels: “ear”

Audio: “sh ang hai   res taur aun ts”

<query, doc1, doc2> P(doc1 preferred over doc2)

“Hello, how are you?” “Bonjour, comment allez-vous?”

Good Fine-grained Classification

“hibiscus” “dahlia”

Good Generalization

Both recognized as a 
“meal”

Works in practice
 for real users.

Joint work with many colleagues at Google

Large Scale Deep Learning

Jeff Dean



Generating Image Captions from Pixels

Human:  A young girl asleep on the sofa cuddling a stuffed bear.!

Model sample 1:  A close up of a child holding a stuffed animal.!

Model sample 2:  A baby is asleep next to a teddy bear.

Work in progress by Oriol Vinyals et al.

Generating Image Captions from Pixels

Human:  Three different types of pizza on top of a stove.!

Model sample 1:  Two pizzas sitting on top of a stove top oven.!

Model sample 2:  A pizza sitting on top of a pan on top of a stove.

Joint work with many colleagues at Google

Large Scale Deep Learning

Jeff Dean





DNN Basics
• 2 Primary Classes of problems: 

• Classification 

• Regression 

• 2 Classes of inputs: 

• Fix size input 

• Variable size inputs (typical solution: Recurrent NNs)  

• Learning Approaches 

• Supervised: labeled data 

• Unsupervised: unable data 

• Reinforcement training: try, succeed/fail?  

• Representational networks: build an internal representation of input/output 

• NNs can encapsulate arbitrary functions.



Feedforward NNs

Convolutional NNs

Recurrent NNs

Recursive NNs

Memory NNs

Deep Belief Nets

Neural Turing Machines

Deep Q Learning

                  Institute for Computational 
& Mathematical Engineering |

Deep Dive into Deep Learning

Luke de Oliveira



Convolutional NN
• 1D: Time series, 2D: images, 3D: video





DNN in Medical Imaging

• Don’t know much about it, but quick googling shows lots of 
examples  

• Demonstrated for a variety of tasks 

• Mapping from image to Atlas 

• Measuring properties of regions (e.g. size of brain 
region) 

• Diagnosis (e.g. Alzheimer’s Disease) 

• And more



Department of Radiology and BRIC, UNC-Chapel Hill 
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HEP and DNN
• Daniel Whiteson et al showed that (NatureCom, Archive)  

• DNN can work better than other techniques for sig/bkg rejection for searches. 

• DNNs can reproduce physics features (e.g. masses) from four vectors. 

• Proof that DNNs use “Renormalization” to recognize cats  (Wired) 

• SLAC group is classifying jets and analyzing jet substructure   (Slides) 

• I know of others… but through private conversations… 

• Seminar at Fermilab tomorrow on DNN in Nova (by Adam Aurisano)  

• DNN & LArTPC? Seems like a perfect match.

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Convolutional NNs, cont’d
• In images, you look at patches of an image, and the CNN 

learns features that have some structure. Called filters 

• In ML, filters for edges, the color red, textures, … 

• In collaboration with SLAC:

http://www.nature.com/ncomms/2014/140702/ncomms5308/abs/ncomms5308.html
http://arxiv.org/abs/1402.4735
http://www.wired.com/2014/12/deep-learning-renormalization/
http://indico.cern.ch/event/395374/session/6/contribution/50/attachments/1186157/1720276/SLAC_StanfordHEPML.pdf


DNN Reco
• Motivations? 

• Hopefully DNN-based feature extractors out perform hand crafted reconstruction 
algorithms. 

• After training, DNN-based will likely to be much faster than algorithmic reconstruction. 
And it’s already running on GPUs. 

• There is incredible value (CHF/dollars) in the fact that DNN may allow performing 
reconstruction without physicists writing algorithms.   

• For LArTPC, it may be able to do something we cannot do algorithmically. 

• Maybe instead of writing reconstruction software, new workflow: 

• Train DNN on Simulated Data, perhaps starting with simplified training samples and 
work towards full complexity. Try different NNs, search hyper-parameters, … 

• Calibrate with the full standard simulation samples of the experiment.  

• If some sub-class of events not are well “reco’d”, add addition training sample. Iterate. 

• Apply to data, perhaps compare to hand scan and use re-enforcement training.



CNN for LArTPC
• My first attempt: DUNE-35 ton 

• Goal: classify raw data: Stopped muons, 
radiated photons, horizontal cosmics, … 
are small but very useful subset of data.  

• How do we make samples of these w/o 
full reconstruction?  

• I faked some events passing/stopped 
muon events, fed it to NVidias DIGITS, 
which is a DNN image classification tool. 

• Really just a very simple proof of 
principle test. 15

Pandora
• Pandora pattern recognition in use for both single-phase and  

 double-phase technologies. !
  - Novel highly modular approach: reconstruct final-state particles via 
     a large number of focused algorithms. !
       ◇ Pandora provides a lightweight framework to support this approach. !
       ◇ Separate reconstruction chains for neutrinos and cosmics. !
  - Goes from 2D hits to 3D particles.

15

Pandora
• Pandora pattern recognition in use for both single-phase and  

 double-phase technologies. !
  - Novel highly modular approach: reconstruct final-state particles via 
     a large number of focused algorithms. !
       ◇ Pandora provides a lightweight framework to support this approach. !
       ◇ Separate reconstruction chains for neutrinos and cosmics. !
  - Goes from 2D hits to 3D particles.



DNN Classification of “Raw” 
LArTPC Data

1-4 Tracks With or without noise, DNN correctly classifies ~90-99%
Passing Stopped

GoogleLeNet 256x256



Particle ID in LArIAT
• Another proof of principle test with lots of obvious things to fix. 

• LArIAT is a small detector: 2 wire places with 240 wires each, 
4096 samples. 

• Generated single 500 +/- 200 MeV particles. 50k of each type. 

• Used standard implementation of GoogLeNet, which takes 
224x224 pixel color images (png files!).  

• Suspect that png conversion + image whitening causes 
loss of charge “scale”. 

• I realized late that it was converting 240x256 to 224x224. 

• Reduced samples by  

• Down sample: Summing N ticks, where N=1-8. 

• Scanning for the box with maximum total charge. 

• 2 planes -> R and G color intensities.  

• Very preliminary… not completely understood.

Photons

Electrons

Muons

Pions

Protons



GoogLeNet

24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:!
Won 2014 ImageNet challenge with 6.66% top-5 error rate

Module with 6 separate!
convolutional layers

http://arxiv.org/abs/1409.4842
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Figure 3: GoogLeNet network with all the bells and whistles
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type
patch size/

stride
output

size
depth #1⇥1

#3⇥3

reduce
#3⇥3

#5⇥5

reduce
#5⇥5

pool
proj

params ops

convolution 7⇥7/2 112⇥112⇥64 1 2.7K 34M

max pool 3⇥3/2 56⇥56⇥64 0

convolution 3⇥3/1 56⇥56⇥192 2 64 192 112K 360M

max pool 3⇥3/2 28⇥28⇥192 0

inception (3a) 28⇥28⇥256 2 64 96 128 16 32 32 159K 128M

inception (3b) 28⇥28⇥480 2 128 128 192 32 96 64 380K 304M

max pool 3⇥3/2 14⇥14⇥480 0

inception (4a) 14⇥14⇥512 2 192 96 208 16 48 64 364K 73M

inception (4b) 14⇥14⇥512 2 160 112 224 24 64 64 437K 88M

inception (4c) 14⇥14⇥512 2 128 128 256 24 64 64 463K 100M

inception (4d) 14⇥14⇥528 2 112 144 288 32 64 64 580K 119M

inception (4e) 14⇥14⇥832 2 256 160 320 32 128 128 840K 170M

max pool 3⇥3/2 7⇥7⇥832 0

inception (5a) 7⇥7⇥832 2 256 160 320 32 128 128 1072K 54M

inception (5b) 7⇥7⇥1024 2 384 192 384 48 128 128 1388K 71M

avg pool 7⇥7/1 1⇥1⇥1024 0

dropout (40%) 1⇥1⇥1024 0

linear 1⇥1⇥1000 1 1000K 1M

softmax 1⇥1⇥1000 0

Table 1: GoogLeNet incarnation of the Inception architecture

minor. Here, the most successful particular instance (named GoogLeNet) is described in Table 1 for
demonstrational purposes. The exact same topology (trained with different sampling methods) was
used for 6 out of the 7 models in our ensemble.

All the convolutions, including those inside the Inception modules, use rectified linear activation.
The size of the receptive field in our network is 224⇥224 taking RGB color channels with mean sub-
traction. “#3⇥3 reduce” and “#5⇥5 reduce” stands for the number of 1⇥1 filters in the reduction
layer used before the 3⇥3 and 5⇥5 convolutions. One can see the number of 1⇥1 filters in the pro-
jection layer after the built-in max-pooling in the pool proj column. All these reduction/projection
layers use rectified linear activation as well.

The network was designed with computational efficiency and practicality in mind, so that inference
can be run on individual devices including even those with limited computational resources, espe-
cially with low-memory footprint. The network is 22 layers deep when counting only layers with
parameters (or 27 layers if we also count pooling). The overall number of layers (independent build-
ing blocks) used for the construction of the network is about 100. However this number depends on
the machine learning infrastructure system used. The use of average pooling before the classifier is
based on [12], although our implementation differs in that we use an extra linear layer. This enables
adapting and fine-tuning our networks for other label sets easily, but it is mostly convenience and
we do not expect it to have a major effect. It was found that a move from fully connected layers to
average pooling improved the top-1 accuracy by about 0.6%, however the use of dropout remained
essential even after removing the fully connected layers.

Given the relatively large depth of the network, the ability to propagate gradients back through all the
layers in an effective manner was a concern. One interesting insight is that the strong performance
of relatively shallower networks on this task suggests that the features produced by the layers in the
middle of the network should be very discriminative. By adding auxiliary classifiers connected to
these intermediate layers, we would expect to encourage discrimination in the lower stages in the
classifier, increase the gradient signal that gets propagated back, and provide additional regulariza-
tion. These classifiers take the form of smaller convolutional networks put on top of the output of
the Inception (4a) and (4d) modules. During training, their loss gets added to the total loss of the
network with a discount weight (the losses of the auxiliary classifiers were weighted by 0.3). At
inference time, these auxiliary networks are discarded.

The exact structure of the extra network on the side, including the auxiliary classifier, is as follows:

• An average pooling layer with 5⇥5 filter size and stride 3, resulting in an 4⇥4⇥512 output
for the (4a), and 4⇥4⇥528 for the (4d) stage.
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(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

64 Convolution in First Layer



Electron vs Photon

How you train is important



Electron vs Photon

Real Photons ID as Photons Real Electrons ID as Electrons



Electron vs Photon

Real Photons ID as ElectronsReal Electrons ID as Photons



Muon vs Pion



Muon vs Pion

Real Muons ID as Muons Real Pions ID as Pions



Muon vs Pion

Real Muons ID as Pion Real Pions ID as Muon



Down Sampling

Competition between resolution vs capturing whole interaction



Siamese Architecture

source                  sink           source                 sink

Next Steps
• Add neutrinos… currently I’m classifying whole events.  

• Start modifying GoogLeNet. 

• Just started collaboration with P. Baldi and P. Sadowski 
from UCI 

• First task: how do we properly feed in the different 
views? 

• Their suggestion: Siamese NN 

• Perhaps we could train a network to resolve the 
ambiguities (1D x 1D => 2D), similar to WireCell? 

• Need to provide true hit info 

• Perhaps 2D x 2D => 3D, to take advantage of 
“connectivity” and topology. 

• How much down sampling? 

• What is appropriate size of convolutions? Hyper-
parameter optimization. 

• Adding regression to estimate the energy should be 
straight forward.



LSTM LSTM

Transferring NLP to HEP

Sentence 1 Sentence 2

word 1 word 2 word 3 word 4 word 5 word 6 word 7

CNN CNN

word 8 word 9 word 10 word 11

CNN

Sentence 3

LSTM

Classifier Output

track 1 track 2 track 3 track 4 track 5 track 6 track 7 track 8 track 9 track 10 track 11

Jet 3Jet 2Jet 1

Event Level Learning

RNN on Jet Representations

• Model I am developing with a colleague for paragraph understanding

Improving Performance
• Identify misclassified events 

• additional training on sample of such events. 

• add new classes to better separate them. 

• Create classes based on final state content and topology. 

• Need to come up with some classification based on truth. 

• Use Region-CNNs to identify regions with individual particles in multi-particle 
events. 

• Remove cosmics. 

• Feed to RNNs to classify full drift.



Inside the Black Box
• Studying DNNs can reveal useful 

features which we don’t know about. 

• SLAC group got insight into color-
flow! 

• Look for correlations between DNN 
output and known features 

• Did the DNN figure out this 
feature? 

• How important is this feature?

48- -
Generic overview slide

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

 | 
DN

N 
O

ut
pu

t)
21τ

Pr
(

0

0.02

0.04

0.06

0.08

0.1

21τ

0 0.2 0.4 0.6 0.8 1

DN
N 

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

 = 13 TeVsPythia 8, QCD dijets, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

R between subjets∆

0 0.5 1 1.5

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.02

0.04

 = 13 TeVsPythia 8, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

 qq'→W
QCD dijets

Jet Mass [GeV]

70 80 90

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.005

0.01

0.015

 = 13 TeVsPythia 8, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

 qq'→W
QCD dijets

21τJet 
0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.01

0.02

 = 13 TeVsPythia 8, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

 qq'→W
QCD dijets

R 
be

tw
ee

n 
su

bj
et

s 
| D

NN
 O

ut
pu

t)
∆

Pr
(

0

0.02

0.04

0.06

0.08

0.1

R between subjets∆

0.4 0.6 0.8 1

DN
N 

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

 = 13 TeVsPythia 8, QCD dijets, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

Pr
(J

et
 M

as
s 

/ G
eV

 | 
DN

N 
O

ut
pu

t)

0

0.02

0.04

0.06

0.08

0.1

Jet Mass / GeV

70 80 90

DN
N 

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

 = 13 TeVsPythia 8, QCD dijets, 
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

Learning about learning

“Learned” t21 !

little mass 
info in the 

middle



DIGITS
• Great way to play.  

• Essentially a web server interface to 
a batch system. Multi-GPU support.  

• Only image classification (for now?). 

• Great potential of evolving to more a 
general tool that will also make DNN 
accessible to everyone.  

• A graphical model editor would 
be awesome.  



DAG-Based 
Frameworks



Processor Landscape
• Parallelism taking off: 

• Multi-core CPUs, with built in GPUs.  

• Many-core GPU/MiCs 

• OpenCL Programmable FPGAs (and ASIC?) 

• Potential to easily move algorithms from software to hardware. 

• On the horizon: 

• CPU/GPU/RAM Stacking 

• CPU+FPGA on same Dye 

• Neuromorphic Chips



HEP Software Landscape
• Shift from Fortan to C++ in late 1990s.  

• The biggest datasets until mid 2000s… industry now leads. 

• Problems: 

• Extremely complicated C++ frameworks, data structures, … 

• Difficulty utilizing Multi-core CPUs and massively parallel GPU/MiC co-processors… or 
any future emerging technology. 

• Expensive: ATLAS software cost ~O(250 Million) CHF to build over 15 years…  

• starting from scratch (to deal with Parallelization problems) for Run 3 wasn't an option 
for ATLAS or CMS. 

• We cannot find developers to fill mission critical posts. Critical people get stuck in jobs… 

• We do not educate HEP PhDs in software… rely on talented people training themselves. 

• There is a culture that software isn’t physics… but electronics and hardware are!  

• e.g. we do not support software R&D.



• Multi-core CPUs: we are quickly approaching 100’s of cores/CPU. 

• Currently relying on Embarrassingly Parallel nature of HEP data. 

• Filling CPU cores with independent instances of software. 

• Not practical to have 4 GB/core for 100’s of cores…  

• Not enough bandwidth to memory if every core needs to access different 4 GB. 

• C++ data structures make it difficult to take advantage of vectorization. 

• Many-core Co-processors (possibly within CPU dye):  GPUs/MiCs, FPGA, (ASICs?) 

• Requires Data Parallelization where (for example) many events are simultaneously 
processed in each algorithm. HEP frameworks designed to see 1 event at a time. 

• Difficult to code. Highly sensitive to optimization and hardware. Difficult to 
efficiently integrate with current software. Rapidly evolving ecosystem. 

• Mostly used in specialized systems like DAQ and Trigger. No good solution for 
offline.

Parallelization Problem



HEP SW Wish List
• Reconstruction closely integrating: 

• Traditional Algorithms like ones in HEP SW today. 

• Deep Neural Networks (and other ML Techniques) 

• Automatic training/monitoring (e.g. for reproducing training in every release) 

• NN visualization (structure and weights), Hyper-parameter scans.  

• Image processing algorithms 

• Event Display / Hand Scan (e.g. for re-enforcement training) 

• Data structures optimized for architecture and computation, with automatic data transformations. 

• Algorithms can process many events at once. 

• Automatically optimized for all/any CPU or GPU architectures. Future proof.   

• Allow physicists to focus on the method and performance not implementation. 

• Easier to hand off problem to professional programmers.



Weaving-in DNN Reco 
Raw Data

Sub-detector 2 
Feature Extraction Alg

DNN Pattern 
Recognition 2

Pattern Recognition 
Alg 2

Feature List Feature Map

Sub-detector 1 
Feature Extraction 

DNN

DNN Pattern 
Recognition 1

Pattern Recognition 
Alg 1

Feature List Feature Map

Feature List = {Hit1, Hit2, …}

Feature Map = 

DNN Combined 
Reconstruction 

Fitting Alg 1 Fitting Alg 2

Combined 
Reconstruction Alg

From Alg From DNN

Simultaneously 
Train All DNNs



Looking Ahead…
• Concurrency (simultaneously processing many events) is a hot topic. 2 types 

• Task Parallel: Many threads, each processing one event. 

• Data Parallel: Algorithms processing many events at once.  

• The LHC experiments are confronting this issue. Current focus on Task Parallelism:  

• CMS already has multi-threaded ART.  

• ATLAS using plans to build on Gaudi-Hive for Run 3. 

• There are schemes to push some algs to co-processors… but not ideal. 

• Experiments will have lifetime of decades (e.g. 30 years for DUNE). We need to 
insulate ourselves from architecture transitions. 

• My opinion: We need new frameworks on the time-scale of HL-LHC, DUNE, ILC. 

• R&D Now. Framework in early 2020s. Reimplement software chain by 2025.



DNN Software
• Basic steps 

• Prepare data 

• Build Model 

• Define Cost/Loss Function 

• Run training (most commonly Gradient Decent) 

• Assess performance. 

• Run lots of experiments… 

• 2 Classes of DNN Software: (Both build everything at runtime) 

• Hep-Framework-Like: e.g. Torch, Caffe, … 

• C++  Layers (i.e. Algorithms)  steered/configured via interpreted script:  

• General Computation Frameworks: Theano and TensorFlow   

• Everything build by building mathematical expression for Model, Loss, Training from primitive ops on 
Tensors 

• Symbolic derivatives for the Gradient Decent 

• Builds Directed Acyclic Graph of the computation, performs optimizations 

• Theano-based High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras, …)



DNN Software
• Data is typically represented as numpy-like Tensors (N dim arrays). 

• Easily change between CPU and GPU implementations of tensor.  

• Usually automatically transferred between CPU/GPU memory. 

• Usually persistified in hdf5… sometimes stored in databases.  

• Supposedly very optimized.  

• GPUs?  

• Most eventually call the same libraries (e.g. cuCNN) for optimized implementation.  

• Most have some library of algorithms with both CPU and GPU implementations. 

• Theano generates code for kernels and uses kernel libraries when appropriate.  

• Almost all on NVidia/CUDA… seeing OpenCL now. 

• I’ve seen significantly better performance from AMD over NVidia for some 
kernels.



• numpy: Matrix manipulation like matlab 

• C=A*B performs a computation on numbers in A and B matrixes  

• sympy: Symbolic manipulation like mathematica 

• C=A*B ; D=A
-1

C ==> D=B 

• Theano: 

• Symbolic representation and operations (e.g. derivatives) 

• Based on Tensors with numpy-like functionality 

• Computation tree optimization 

• Transparently compiles into CPU, OpenMP, CUDA, and OpenCL. 

• Many missing/non-optimal features in GPU implementation 

• Provides a framework for implementing new operations, optimizations, and backends. 

• Provides an environment built for optimizing calculations on CPUs and GPUs.  

• Why? instead of writing code to perform you calculation, use these systems to write down the 
mathematical expressions… and they will generate optimized code.

Math in Python



• Easy to switch from C to Python to Theano to Sympy, etc…  

• Just build your expression with python functions and feed the different objects for different versions.  

• consider: def f(x): x*x 

• python: y=f(2) -> y=4 (regular python float) 

• sympy: y=f(x) -> y = symbolic rep 

• theano: y=f(x) -> y = symbolic rep 

• compute_y=function([x],y)   optimizes/compiles 

• compute_y(2) -> 4 

• Various ways to convert sympy -> theano: 

• theano_function: takes a sympy expressions and translates it into Theano expression. 

• SymCFunc: creates efficient c-code for scaler expression which Theano can wrap… 

• The c-function can be faster. 

• But then Theano can’t optimize it. 

• Parallelization: tensor representation… numpy broadcasting for scaling. 

• Loops = contraction of indexes… makes reordering loops easy 

• Iteration = shared variables (keep state) and update mechanism.

Working with Theano



MEM with Theano
• Matrix Element Method is in principle the most sensitive technique for searches, 

but has been prohibitively CPU intensive.  

• Simple case (6 diagrams): u u -> 3 gamma matrix element. One of the first 
examples of ME on GPU from 2010. (based on http://arxiv.org/pdf/
0908.4403.pdf) 

• Note interesting LHC processes have O(100) diagrams. 

• Focusing on ME evaluations only… no integration, change of vars, etc… 

• I count ~ 500 real and 500 complex numerical operations in the ME calculation 
(~1500 total).  

• c-code → python → Theano reduces operations to ~1000.  

• c-code → python → sympy → Theano reduces the operations to 321 (116 
on GPU, but I can’t compile!) 

• 5.1x (4.6x) faster per event single thread computation time float (double).

http://arxiv.org/pdf/0908.4403.pdf


Theano
• Might be trivial to implement some algorithms with Theano. 

• Anything you can write as a formula can be easily expressed in Theano and 
automatically optimized. 

• Many things are already implemented. 

• For example, Kalman Filter (from: http://matthewrocklin.com/blog/work/2013/04/05/
SymPy-Theano-part-3/)

http://matthewrocklin.com/blog/work/2013/04/05/SymPy-Theano-part-3/


DAG Framework?
• Today with Theano 

• A Physicists can write down math expression for their computation or algorithm. 
Theano auto optimizes… 

• no computing expertise necessary.  

• Can pass expression to professionals who tune optimization/code generation in 
Theano 

• No physics understanding necessary.  

• Code generation can be optimized for each architecture. 

• Naively, we should consider completely different approach to writing software: 

• High level description of algorithms/data by physicists (new language?) 

• The representation of the data and the implementation of the computation is 
changeable. 

• Automatic analysis of the computation graph and targeted code generation, 
developed/optimized by experts



TensorFlow
• Google Deep Learning tool, many similarities to Theano, recently open sourced. C++ and python API. 

• Computation is done by building a DAG in a Session. Performs DAG optimizations. 

• Library of operations which wrap CPU and GPU kernels   

• Extendable. 

• Ops can provide gradient implementation.  

• Doesn’t generate code like Theano. 

• Provides control flow operations which allows implementing loops. 

• Variables provide mutable data.  

• Containers allow sharing mutable data between disjoint computation graphs. 

• Queues automatically provide asynchronous computation when possible.  

• Designed for heterogeneous and distributed computing.  

• Point is that the same code generate same computation on any system. 

• From mobile phones, to multi-gpu systems, to heterogeneous distributed clusters. 

• Optimizes kernel placement using cost models, simulations, measurements of performance of kernels on devices 
and data transfer times. 

• Has Fault Tolerance. 

• TensorBoard provides graph and data visualization. 
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input and output tensors for each graph node, along with
estimates of the computation time required for each node
when presented with its input tensors. This cost model is
either statically estimated based on heuristics associated
with different operation types, or is measured based on
an actual set of placement decisions for earlier execu-
tions of the graph.

The placement algorithm first runs a simulated execu-
tion of the graph. The simulation is described below and
ends up picking a device for each node in the graph using
greedy heuristics. The node to device placement gener-
ated by this simulation is also used as the placement for
the real execution.

The placement algorithm starts with the sources of the
computation graph, and simulates the activity on each
device in the system as it progresses. For each node that
is reached in this traversal, the set of feasible devices is
considered (a device may not be feasible if the device
does not provide a kernel that implements the particular
operation). For nodes with multiple feasible devices, the
placement algorithm uses a greedy heuristic that exam-
ines the effects on the completion time of the node of
placing the node on each possible device. This heuristic
takes into account the estimated or measured execution
time of the operation on that kind of device from the cost
model, and also includes the costs of any communica-
tion that would be introduced in order to transmit inputs
to this node from other devices to the considered device.
The device where the node’s operation would finish the
soonest is selected as the device for that operation, and
the placement process then continues onwards to make
placement decisions for other nodes in the graph, includ-
ing downstream nodes that are now ready for their own
simulated execution. Section 4.3 describes some exten-
sions that allow users to provide hints and partial con-
straints to guide the placement algorithm. The placement
algorithm is an area of ongoing development within the
system.

3.2.2 Cross-Device Communication

Once the node placement has been computed, the graph
is partitioned into a set of subgraphs, one per device. Any
cross-device edge from x to y is removed and replaced
by an edge from x to a new Send node in x’s subgraph
and an edge from a corresponding Receive node to y in
y’s subgraph. See Figure 4 for an example of this graph
transformation.

Figure 4: Before & after insertion of Send/Receive nodes

At runtime, the implementations of the Send and Re-
ceive nodes coordinate to transfer data across devices.
This allows us to isolate all communication inside Send
and Receive implementations, which simplifies the rest
of the runtime.

When we insert Send and Receive nodes, we canoni-
calize all users of a particular tensor on a particular de-
vice to use a single Receive node, rather than one Re-
ceive node per downstream user on a particular device.
This ensures that the data for the needed tensor is only
transmitted once between a source device ! destination
device pair, and that memory for the tensor on the desti-
nation device is only allocated once, rather than multiple
times (e.g., see nodes b and c in Figure 4)

By handling communication in this manner, we also
allow the scheduling of individual nodes of the graph
on different devices to be decentralized into the work-
ers: the Send and Receive nodes impart the necessary

5

Figure 3: Single machine and distributed system structure

input and output tensors for each graph node, along with
estimates of the computation time required for each node
when presented with its input tensors. This cost model is
either statically estimated based on heuristics associated
with different operation types, or is measured based on
an actual set of placement decisions for earlier execu-
tions of the graph.

The placement algorithm first runs a simulated execu-
tion of the graph. The simulation is described below and
ends up picking a device for each node in the graph using
greedy heuristics. The node to device placement gener-
ated by this simulation is also used as the placement for
the real execution.

The placement algorithm starts with the sources of the
computation graph, and simulates the activity on each
device in the system as it progresses. For each node that
is reached in this traversal, the set of feasible devices is
considered (a device may not be feasible if the device
does not provide a kernel that implements the particular
operation). For nodes with multiple feasible devices, the
placement algorithm uses a greedy heuristic that exam-
ines the effects on the completion time of the node of
placing the node on each possible device. This heuristic
takes into account the estimated or measured execution
time of the operation on that kind of device from the cost
model, and also includes the costs of any communica-
tion that would be introduced in order to transmit inputs
to this node from other devices to the considered device.
The device where the node’s operation would finish the
soonest is selected as the device for that operation, and
the placement process then continues onwards to make
placement decisions for other nodes in the graph, includ-
ing downstream nodes that are now ready for their own
simulated execution. Section 4.3 describes some exten-
sions that allow users to provide hints and partial con-
straints to guide the placement algorithm. The placement
algorithm is an area of ongoing development within the
system.

3.2.2 Cross-Device Communication

Once the node placement has been computed, the graph
is partitioned into a set of subgraphs, one per device. Any
cross-device edge from x to y is removed and replaced
by an edge from x to a new Send node in x’s subgraph
and an edge from a corresponding Receive node to y in
y’s subgraph. See Figure 4 for an example of this graph
transformation.

a

b c

x

y

recv

send

recv

send

a

b c

x

y

Device A

W W

Device A

Device B Device B

Figure 4: Before & after insertion of Send/Receive nodes

At runtime, the implementations of the Send and Re-
ceive nodes coordinate to transfer data across devices.
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This generally means that temporary outputs are con-
sumed soon after being constructed, so their memory can
be reused quickly. When the heuristic is ineffective, the
user can change the order of graph construction, or add
control dependencies as described in Section 5. When
gradient nodes are automatically added to the graph, the
user has less control, and the heuristics may break down.
In particular, because gradients reverse the forward com-
putation order, tensors that are used early in a graph’s
execution are frequently needed again near the end of a
gradient computation. Such tensors can hold on to a lot
of scarce GPU memory and unnecessarily limit the size
of computations. We are actively working on improve-
ments to memory management to deal better with such
cases. Options include using more sophisticated heuris-
tics to determine the order of graph execution, recom-
puting tensors instead of retaining them in memory, and
swapping out long-lived tensors from GPU memory to
more plentiful host CPU memory.

4.2 Partial Execution

Often a client wants to execute just a subgraph of the
entire execution graph. To support this, once the client
has set up a computation graph in a Session, our Run
method allows them to execute an arbitrary subgraph of
the whole graph, and to inject arbitrary data along any
edge in the graph, and to retrieve data flowing along any
edge in the graph.

Each node in the graph has a name, and each output of
a node is identified by the source node name and the out-
put port from the node, numbered from 0 (e.g., “bar:0”
refers to the 1st output of the “bar” node, while “bar:1”
refers to the 2nd output).

Two arguments to the Run call help define the exact
subgraph of the computation graph that will be executed.
First, the Run call accepts inputs, an optional mapping
of name:port names to “fed” tensors values. Second,
the Run call accepts output names, a list of output
name[:port] specifications indicating which nodes
should be executed, and, if the port portion is present in a
name, that that particular output tensor value for the node
should be returned to the client if the Run call completes
successfully.

The graph is transformed based on the values of in-
puts and outputs. Each node:port specified in inputs is
replaced with a feed node, which will pick up the pro-
vided input tensor from specially-initialized entries in a
Rendezvous object used for the Run call. Similarly, each
output name with a port is connected to a special fetch
node that arranges to save the output tensor and return it
to the client when the Run call is complete. Finally, once
the graph has been rewritten with the insertion of these
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Figure 6: Before and after graph transformation for par-
tial execution

special feed and fetch nodes, the set of nodes to execute
can be determined by starting at each of the nodes named
by any output and working backwards in the graph using
the graph dependencies to determine the full set of nodes
that must be executed in the rewritten graph in order to
compute the outputs. Figure 6 shows an original graph
on the left, and the transformed graph that results when
Run is invoked with inputs=={b} and outputs=={f:0}.
Since we only need to compute the output of node f, we
will not execute nodes d and e, since they have no con-
tribution to the output of f.

4.3 Device Constraints

TensorFlow clients can control the placement of nodes
on devices by providing partial constraints for a node
about which devices it can execute on. For ex-
ample, “only place this node on a device of type
GPU”, or “this node can be placed on any device in
/job:worker/task:17”, or “Colocate this node
with the node named variable13”. Within the con-
fines of these constraints, the placement algorithm is re-
sponsible for choosing an assignment of nodes to de-
vices that provides fast execution of the computation and
also satisfies various constraints imposed by the devices
themselves, such as limiting the total amount of memory
needed on a device in order to execute its subset of graph
nodes.

Supporting such constraints requires changes to the
placement algorithm described in Section 3.2.1. We first
compute the feasible set of devices for each node, and
then use union-find on the graph of colocation constraints
to compute the graph components that must be placed
together. For each such component, we compute the in-
tersection of the feasible device sets. The computed fea-
sible device set per node fits easily into the placement
algorithm’s simulator.

7

input

Device B

input

Device C

input

Device A

Parameter Device(s)

P

ΔP
Add

UpdateClient

Synchronous Data Parallelism

Client 1

input

Device B

input

Device C

input

Device A

Parameter Device(s)

P

Update

ΔP

Update
Update

ΔP

ΔP
Client 2
Client 3

Asynchronous Data Parallelism

model model model

model model model

Figure 7: Synchronous and asynchronous data parallel training

Validating complex mathematical operations in the
presence of an inherently stochastic system is quite chal-
lenging. The strategies outlined above proved invaluable
in gaining confidence in the system and ultimately in in-
stantiating the Inception model in TensorFlow. The end
result of these efforts resulted in a 6-fold speed improve-
ment in training time versus our existing DistBelief im-
plementation of the model and such speed gains proved
indispensable in training a new class of larger-scale im-
age recognition models.

7 Common Programming Idioms

TensorFlow’s basic dataflow graph model can be used in
a variety of ways for machine learning applications. One
domain we care about is speeding up training of com-
putationally intensive neural network models on large
datasets. This section describes several techniques that
we and others have developed in order to accomplish
this, and illustrates how to use TensorFlow to realize
these various approaches.

The approaches in this subsection assume that the
model is being trained using stochastic gradient descent
(SGD) with relatively modest-sized mini-batches of 100
to 1000 examples.

Data Parallel Training

One simple technique for speeding up SGD is to paral-
lelize the computation of the gradient for a mini-batch
across mini-batch elements. For example, if we are us-
ing a mini-batch size of 1000 elements, we can use 10
replicas of the model to each compute the gradient for
100 elements, and then combine the gradients and apply
updates to the parameters synchronously, in order to be-
have exactly as if we were running the sequential SGD
algorithm with a batch size of 1000 elements. In this
case, the TensorFlow graph simply has many replicas of
the portion of the graph that does the bulk of the model
computation, and a single client thread drives the entire
training loop for this large graph. This is illustrated in
the top portion of Figure 7.

This approach can also be made asynchronous, where
the TensorFlow graph has many replicas of the portion of
the graph that does the bulk of the model computation,
and each one of these replicas also applies the parame-
ter updates to the model parameters asynchronously. In
this configuration, there is one client thread for each of
the graph replicas. This is illustrated in the bottom por-
tion of Figure 7. This asynchronous approach was also
described in [14].
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Model Parallel Training

Model parallel training, where different portions of the
model computation are done on different computational
devices simultaneously for the same batch of examples,
is also easy to express in TensorFlow. Figure 8 shows
an example of a recurrent, deep LSTM model used for
sequence to sequence learning (see [47]), parallelized
across three different devices.

Concurrent Steps for Model Computation Pipelining

Another common way to get better utilization for train-
ing deep neural networks is to pipeline the computation
of the model within the same devices, by running a small
number of concurrent steps within the same set of de-
vices. This is shown in Figure 9. It is somewhat similar
to asynchronous data parallelism, except that the paral-
lelism occurs within the same device(s), rather than repli-
cating the computation graph on different devices. This
allows “filling in the gaps” where computation of a sin-
gle batch of examples might not be able to fully utilize
the full parallelism on all devices at all times during a
single step.

8 Performance

A future version of this white paper will have a compre-
hensive performance evaluation section of both the sin-
gle machine and distributed implementations.

9 Tools

This section describes some tools we have developed that
sit alongside the core TensorFlow graph execution en-
gine.

9.1 TensorBoard: Visualization of graph
structures and summary statistics

In order to help users understand the structure of their
computation graphs and also to understand the overall
behavior of machine learning models, we have built Ten-
sorBoard, a companion visualization tool for TensorFlow
that is included in the open source release.

Visualization of Computation Graphs

Many of the computation graphs for deep neural net-
works can be quite complex. For example, the computa-
tion graph for training a model similar to Google’s Incep-
tion model [48], a deep convolutional neural net that had
the best classification performance in the ImageNet 2014
contest, has over 36,000 nodes in its TensorFlow compu-
tation graph, and some deep recurrent LSTM models for
language modeling have more than 15,000 nodes.

Due to the size and topology of these graphs, naive vi-
sualization techniques often produce cluttered and over-
whelming diagrams. To help users see the underlying
organization of the graphs, the algorithms in Tensor-
Board collapse nodes into high-level blocks, highlighting
groups with identical structures. The system also sep-
arates out high-degree nodes, which often serve book-
keeping functions, into a separate area of the screen. Do-
ing so reduces visual clutter and focuses attention on the
core sections of the computation graph.

The entire visualization is interactive: users can pan,
zoom, and expand grouped nodes to drill down for de-
tails. An example of the visualization for the graph of a
deep convolutional image model is shown in Figure 10.

Visualization of Summary Data

When training machine learning models, users often
want to be able to examine the state of various aspects
of the model, and how this state changes over time. To
this end, TensorFlow supports a collection of different
Summary operations that can be inserted into the graph,
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Figure 10: TensorBoard graph visualization of a convolutional neural network model

Figure 11: TensorBoard graphical display of model summary statistics time series data

including scalar summaries (e.g., for examining overall
properties of the model, such as the value of the loss
function averaged across a collection of examples, or the
time taken to execute the computation graph), histogram-
based summaries (e.g., the distribution of weight values
in a neural network layer), or image-based summaries
(e.g., a visualization of the filter weights learned in a
convolutional neural network). Typically computation
graphs are set up so that Summary nodes are included
to monitor various interesting values, and every so often
during execution of the training graph, the set of sum-
mary nodes are also executed, in addition to the normal
set of nodes that are executed, and the client driver pro-
gram writes the summary data to a log file associated
with the model training. The TensorBoard program is
then configured to watch this log file for new summary

records, and can display this summary information and
how it changes over time (with the ability to select the
measurement of “time” to be relative wall time since
the beginning of the execution of the TensorFlow pro-
gram, absolute time, or “steps”, a numeric measure of
the number of graph executions that have occurred since
the beginning of execution of the TensorFlow program).
A screen shot of the visualization of summary values in
TensorBoard is shown in Figure 11.

9.2 Performance Tracing

We also have an internal tool called EEG (not included
in the initial open source release in November, 2015) that
we use to collect and visualize very fine-grained informa-
tion about the exact ordering and performance character-
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DAG/Tensor Based Systems
• TensorFlow paper points out that there are many other similar systems 

• None provide the level of support for heterogeneous and distributed 
systems. 

• Few have features that TensorFlow intends to implement.  

• For example automatically generating kernels that more efficient by 
combining operations. 

• Clearly there is a some of commonality with Gaudi-Hive, WireCell 2.0, etc… 

• The appeal of TensorFlow is that it will be supported by Google and open 
source community. 

• Potential to outsource the low level details and optimization to Google, 
community, and non HEP-professionals. 

• If not the basis, these systems may provide inspiration for future framework.



DAG/Tensor HEP Framework?
• I can imagine building Reconstruction, DAQ, or Trigger based on this system. 

• Reconstruction our extremely complicated…  

• Some steps (e.g. FFT deconvolution) could be implement in a few lines using existing ops. 

• Complex algorithms can be written into Ops/Kernels. 

• These can be wrapped by an abstractions analogous to ART Modules/Gaudi Algorithms. 

• Similar to high level DNN SW build on top of Theano. 

• Our Data is complicated 

• Representation as tensors is efficient for vectorization, GPUs, and easily segmenting data. 

• High Level Objects can wrap these objects. 

• Not sure Event Store is necessary in Data Flow approach… could be faked (e.g. simple python dictionary) 

• Data isn’t fetched at run-time.  

• Not sure how to handle Conditions Database, Geometry, etc… 

• I think implementing WireCell in TensorFlow or Theano is perfect R&D for such an idea.



Final Thoughts
• LArTPC is ideally suited for Deep Learning 

• Minimally, we could provide better classifiers based on engineered features. 

• Classification based on raw data is analogous to the impressive CNN image recognition already demonstrated. 

• My extremely simple study is very promising. 

• Measuring energy seems like straight forward extension.  

• Classification + energy is all we need for neutrino physics, right? 

• R-CNNs can extend this approach to busy events. 

• Not clear if best to look at event as a whole or reco events particle by particle. 

• We could also consider DNNs that perform specific parts of our standard reconstruction, perhaps the ambiguity resolution of 
WireCell?  

• Hand scans and Reinforcement training seem like a perfect fit. 

• I believe future frameworks will have many features already in DNN SW like TensorFlow 

• Minimally, we should learn from these systems. 

• Building our frameworks on top of a broadly used system is highly desirable. 

• Save a lot of time/manpower/money. 

• Allow physicists to focus on physics. Easy to try ideas. Let “professionals” worry about the hard technical stuff. 

• Provide access to broader range of architectures and resources… future-proof.


